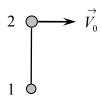
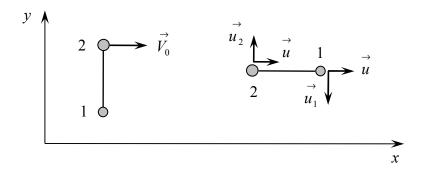
Олимпиада школьников «Курчатов» по физике – 2021

Онлайн-этап. 10 класс

Задача 1/1. По гладкой горизонтальной поверхности скользят две маленькие шайбы 1 и 2, соединённые жёстким невесомым стержнем. Известно отношение масс шайб: $m_2/m_1=2$. В некоторый момент времени, принятый за начальный, скорость шайбы 1 равна нулю, а скорость $\overrightarrow{V_0}$ шайбы 2 направлена перпендикулярно стержню. Найдите угол α , который образует со стержнем вектор скорости шайбы 2 в момент, когда стержень повернулся на угол 270° относительно начального положения. Ответ выразите в градусах и округлите до целого значения.



Возможное решение



Разложим скорости шайб на составляющие, параллельные и перпендикулярные стержню в конечном положении:

$$\overrightarrow{V}_1 = \overrightarrow{u} + \overrightarrow{u}_1,$$

$$\overrightarrow{V}_2 = \overrightarrow{u} + \overrightarrow{u}_2$$
.

Вектор \overrightarrow{u} направлен вдоль стержня. Так как длина стержня не меняется при движении, эта составляющая одинакова для обеих шайб. Векторы $\overrightarrow{u_1}$ и $\overrightarrow{u_2}$ перпендикулярны стержню. Поскольку шайбы движутся без трения, их суммарный импульс сохраняется:

$$m_2\overrightarrow{V_0} = m_1\overrightarrow{V_1} + m_2\overrightarrow{V_2} \quad \rightarrow \quad 2\,m_1\overrightarrow{V_0} = m_1\big(\,\overrightarrow{u} + \overrightarrow{u_1}\,\big) + 2\,m_1\big(\,\overrightarrow{u} + \overrightarrow{u_2}\,\big) \quad \rightarrow \quad 2\overrightarrow{V_0} = 3\,\overrightarrow{u} + \overrightarrow{u_1} + 2\,\overrightarrow{u_2}\,.$$

Направим оси неподвижной системы координат вдоль начального и конечного положений стержня. В проекциях имеем:

$$2V_0 = 3u \quad \to \quad u = \frac{2V_0}{3},$$

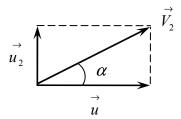
$$0 = -u_1 + 2 u_2 \quad \to \quad u_1 = 2 u_2 \,.$$

Далее воспользуемся законом сохранения энергии:

$$\frac{m_2 V_0^2}{2} = \frac{m_1 V_1^2}{2} + \frac{m_2 V_2^2}{2} \quad \rightarrow \quad 2 \, m_1 V_0^2 = m_1 \big(\, u^2 + u_1^2 \, \big) + 2 \, m_1 \big(\, u^2 + u_2^2 \, \big) \quad \rightarrow \quad 2 \, V_0^2 = 3 \, u^2 + u_1^2 + 2 \, u_2^2 \, .$$

Подставляя сюда полученные выше выражения для u и u_1 , находим составляющую скорости u_2 :

$$2V_0^2 = 3 \cdot \frac{4V_0^2}{9} + 4u_2^2 + 2u_2^2 \quad \rightarrow \quad 6u_2^2 = \frac{2V_0^2}{3} \quad \rightarrow \quad u_2^2 = \frac{V_0^2}{9} \quad \rightarrow \quad u_2 = \frac{V_0}{3}.$$



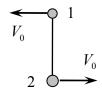
Так как вектор \overrightarrow{u} направлен вдоль стержня, искомый угол α есть угол между векторами \overrightarrow{u} и $\overrightarrow{V_2}$. Получаем:

$$\label{eq:alpha} \operatorname{tg}\alpha = \frac{u_2}{u} = \frac{1}{2} \quad \to \quad \alpha = \operatorname{arctg}\frac{1}{2} \approx 27^{\circ}.$$

Ответ:

$$\alpha = 27^{\circ}$$

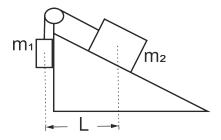
Задача 1/2. По гладкой горизонтальной поверхности скользят две маленькие шайбы 1 и 2, соединённые жёстким невесомым стержнем. Известно отношение масс шайб: $m_2/m_1=4$. В некоторый момент времени, принятый за начальный, скорости шайб равны по абсолютной величине и направлены перпендикулярно стержню в противоположные стороны. Найдите угол α , который образует со стержнем вектор скорости шайбы 2 в момент, когда стержень повернулся на угол 270° относительно начального положения. Ответ выразите в градусах и округлите до целого значения.



Ответ:

$$\alpha = 34^{\circ}$$

Задача 2/1. На тяжелом гладком клине с углом наклона к горизонту $\alpha = 30^{\circ}$ закреплен блок в верхнем углу, через него перекинута нить. Нить привязана к брускам массы $m_1 = 2$ кг и $m_2 = 1$ кг (см.рис). Первоначально тела располагаются на одной высоте на расстоянии L = 2,5 м друг от друга. Найдите расстояние между брусками через время t = 1 с после начала движения. Клин покоится на покоится на горизонтальной поверхности. Нить считать легкой и нерастяжимой, ускорение свободного падения принять равным 10 м/c^2 . Ответ выразите в метрах, округлив до десятых.



Возможное решение

Напишем второй закон Ньютона для брусков с массами m_1 и m_2 в проекциях на ось Y_1 , сонаправленную ускорению свободного падения \overrightarrow{g} , и ось X_1 , направленную вдоль наклонной части клина:

$$\begin{cases}
 m_1 a = m_1 g - T \\
 m_2 a = T - m_2 g s i n \alpha
\end{cases}$$

Просуммировав уравнения, получим выражение для ускорения системы брусков:

$$a = \frac{g(m_1 - m_2 sin\alpha)}{m_1 + m_2}.$$

Найдем расстояние между брусками l через время t=1с. Для удобства выберем другую систему координат, такую что ось X_2 направлена горизонтально вдоль нижней части бруска вправо, а ось Y_2 направлена противоположно ускорению свободного падения \overrightarrow{g} . Определим координаты брусков по горизонтали и по вертикали через время t=1:

$$x_1 = 0, \quad y_1 = -at^2/2;$$

 $x_2 = L - a\cos\alpha t^2/2, \quad y_2 = a\sin\alpha t^2/2.$

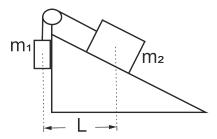
Тогда расстояние между брусками будет равно

$$l = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \frac{at^2}{2} \sqrt{(1 + sin\alpha)^2 + (\frac{2L}{at^2} - cos\alpha)^2} \approx 3.8 \text{ m}.$$

Ответ:

$$l = 3.8$$

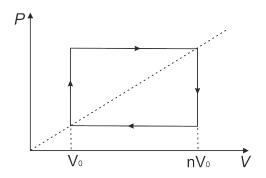
Задача 2/2. На тяжелом гладком клине с углом наклона к горизонту $\alpha = 30^{\circ}$ закреплен блок в верхнем углу, через него перекинута нить. Нить привязана к телам массы $m_1 = 1$ кг и $m_2 = 1$ кг (см.рис). Первоначально тела располагаются на одной высоте, на расстоянии L = 2,5 м друг от друга. Найдите расстояние между телами через время t = 1 с после начала движения. Нить считать легкой и нерастяжимой, ускорение свободного падения принять равным 10 м/c^2 . Ответ выразите в метрах, округлив до десятых.



Ответ:

$$l = 2.4$$

Задача 3/1. Цикл работы тепловой машины (рабочее тело – идеальный газ с молярной теплоемкостью при постоянном объеме $c_v = 20 \frac{\text{Дж}}{\text{моль-К}}$) состоит из двух изохор и двух изобар (см. рис.). Найдите отношение тепла, полученного газом, к работе газа за цикл. Отношение максимального объема газа к минимальному n=2. Ответ приведите в процентах, округлив до целых.



Возможное решение

Обозначим минимальное давление в цикле как P_0 , а максимальное P_{max} . Пронумеруем точки цикла по часовой стрелке следующим образом: изохорический процесс с увеличением давления от P_0 до P_{max} – процесс 1-2, изобарический процесс с увеличением объема от V_0 до nV_0 – процесс 2-3, изохорический процесс с уменьшением давления от P_{max} до P_0 – процесс 3-4, изобарический процесс с уменьшением объема от V_0 до nV_0 – процесс 4-1. Найдем максимальное давление P_{max} в цикле из подобия прямоугольных треугольников:

$$P_0/V_0 = P_{max}/nV_0 \rightarrow P_{max} = nP_0$$

Найдем работу над газом за цикл, как площадь прямоугольника 1-2-3-4:

$$A = P_0 V_0 (n-1)^2 \,.$$

Молярная теплоемкость при постоянном объеме равна $c_v = \frac{i}{2}R$. Напишем уравнение Майера: $c_p - c_v = R$, где c_p – молярная теплоемкость при постоянном давлении. Количество теплоты Q будет подводится к циклу в процессах 1-2 и 2-3, тогда:

$$Q = \frac{c_v}{R} P_2 V_2 - \frac{c_v}{R} P_1 V_1 + \frac{c_v + R}{R} P_3 V_3 - \frac{c_v + R}{R} P_2 V_2 = \frac{c_v}{R} P_0 V_0 (n - 1) + \frac{c_v + R}{R} P_0 V_0 n(n - 1).$$

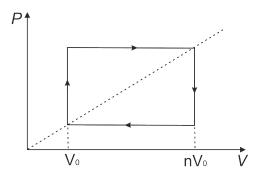
Отсюда получаем:

$$k = Q/A = \frac{\frac{c_v}{R} P_0 V_0(n-1) + \frac{c_v + R}{R} P_0 V_0 n(n-1)}{P_0 V_0(n-1)^2} = \frac{c_v}{R} \frac{1}{n-1} + \frac{c_v + R}{R} \frac{n}{n-1} = \frac{c_v(n+1) + nR}{R(n-1)} \approx 9,22 \quad \rightarrow \quad k \approx 922\%.$$

Ответ:

$$k = 922\%$$

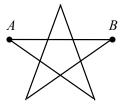
Задача 3/2. Цикл работы тепловой машины (рабочее тело – идеальный газ с молярной теплоемкостью при постоянном объеме $c_v = 15 \frac{\text{Дж}}{\text{моль-К}}$) состоит из двух изохор и двух изобар (см. рис.). Найдите отношение тепла, полученного газом, к работе газа за цикл. Отношение максимального объема газа к минимальному n=3. Ответ приведите в процентах, округлив до целых.



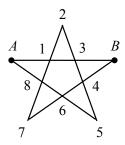
Ответ:

$$k = 511\%$$

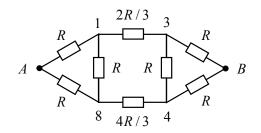
Задача 4/1. Из пятнадцати проволочных отрезков сопротивлением R=0.32 Ом каждый собрана пятиконечная звезда. Найдите общее сопротивлене звезды R_0 при её подключении к источнику постоянного тока за точки A и B. Ответ выразите в омах и округлите до сотых.

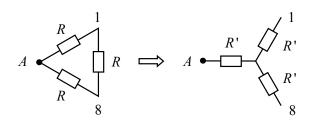


Возможное решение



Обозначим узлы звезды цифрами от 1 до 8. Треугольники 123, 456 и 678 состоят из сопротивлений R и 2R, соединённых параллельно. Эквивалентное сопротивление каждого такого треугольника равно 2R/3. Кроме того, треугольники 456 и 678 соединены последовательно, поэтому их можно заменить одним сопротивлением 4R/3. В результате получаем упрощённую схему. Для того чтобы продвинуться дальше, преобразуем треугольник A18 в звезду. Так как сопротивления всех сторон

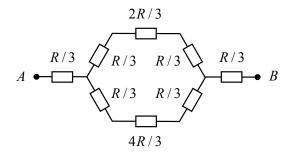




треугольника одинаковы, то звезда также состоит из одинаковых сопротивлений R'. Значение R' найдём, потребовав, чтобы при подключении источника тока за точки A и 1 сопротивления треугольника и звезды совпадали. Получаем:

$$\frac{2R}{3} = 2R' \longrightarrow R' = \frac{R}{3}$$
.

Заменяя треугольник B43 на такую же звезду, приходим к схеме, общее сопротиление которой легко вычисляется по обычным правилам сложения сопротивлений при параллельном и последовательном соединениях.



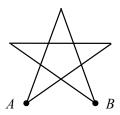
Окончательно получаем:

$$R_0 = \frac{22 R}{15} = 0.47 \text{ Om}$$

Ответ:

$$R_0 = \frac{22\,R}{15} = 0.47 \text{ Om}$$

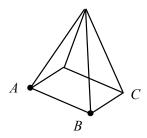
Задача 4/2. Из пятнадцати проволочных отрезков сопротивлением R=0.24 Ом каждый собрана пятиконечная звезда. Найдите общее сопротивлене звезды R_0 при её подключении к источнику постоянного тока за точки A и B. Ответ выразите в омах и округлите до сотых.



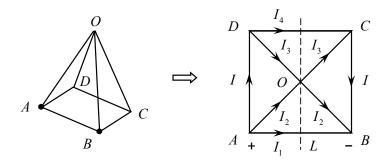
Ответ:

$$R_0 = \frac{6R}{5} = 0.29 \text{ Om}$$

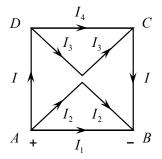
Задача 5/1. Из восьми проволочных отрезков сопротивлением R=0,2 Ом каждый собрана четырёхугольная пирамида. Пирамида подключёна к источнику постоянного напряжения V=15 мВ за точки A и B. Найдите силу тока I, текущего по стороне основания BC. Ответ выразите в миллиамперах и округлите до десятых.



Возможное решение



Пусть положительный полюс батареи подключён к точке A, а отрицательный к точке B. Перерисуем пирамиду в виде плоской схемы и рассмотрим распределение токов в ветвях. Так как при подключении батареи к точкам A и B схема зеркально симметрична относительно прямой L, продящей через точку O и середины отрезков AB и DC, распределение токов также обладает зеркальной симметрией. В частности, по отрезкам AO и OB течёт один и тот же ток I_2 , а по отрезкам DO и CC один и тот же ток I_3 . Поэтому точку O можно разорвать без изменения распределения токов. В результате получаем простую схему, в которой можно легко найти ток I.



Верхний треугольник, по которому текут токи I_3 и I_4 , состоит из двух сопротивлений R и 2R, соединённых параллельно. Этот треугольник можно заменить одним эквивалентным сопротивлением 2R/3. Тогда полное сопротивление R' участка ADCB равно:

$$R' = R + \frac{2R}{3} + R = \frac{8R}{3}$$
.

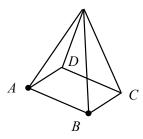
Для тока I получаем:

$$I = \frac{V}{R'} = \frac{3V}{8R} = 28.1 \text{ mA}.$$

Ответ:

$$I=rac{3\,V}{8\,R}=28,$$
1 мА

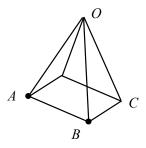
Задача 5/2. Из восьми проволочных отрезков сопротивлением R=0.43 Ом каждый собрана четырёхугольная пирамида. Пирамида подключёна к источнику постоянного напряжения V=75 мВ за точки A и B. Найдите силу тока I, текущего по стороне основания CD. Ответ выразите в миллиамперах и округлите до десятых.



Ответ:

$$I = \frac{V}{4R} = 43,6$$
 мА

Задача 5/3. Из восьми проволочных отрезков сопротивлением R=0,11 Ом каждый собрана четырёхугольная пирамида. Пирамида подключёна к источнику постоянного напряжения V=30 мВ за точки A и B. Найдите силу тока I, текущего по боковому ребру O C. Ответ выразите в миллиамперах и округлите до десятых.

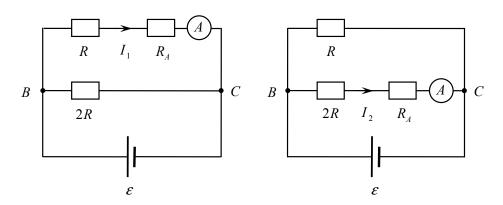


Ответ:

$$I = \frac{V}{8R} = 34.1 \text{ mA}$$

Задача 6/1. Два сопротивления, одно из которых в 2 раза больше другого, соединены параллельно и подключены к батарее. Измеряя с помощью одного и того же амперметра силу тока, текущего через сопротивления, получили значения $I_1=30\,$ мА для меньшего сопротивления и $I_2=20\,$ мА для большего. Найдите показание амперметра I, если в той же цепи использовать его для измерения силы тока, текущего через батарею. Ответ выразите в миллиамперах. Внутреннее сопротивление батареи не учитывайте.

Возможное решение



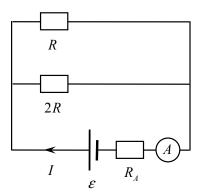
Пусть R и 2R — параллельно соединённые сопротивления. Неравенство $I_1 \neq 2I_2$ означает, что сопротивление амперметра отлично от нуля. Обозначим его через R_A . Учитывая, что при измерении токов I_1 и I_2 напряжение между точками B и C равно эдс батареи ε , получаем два уравнения:

$$R + R_A = \frac{\varepsilon}{I_1}, \quad 2R + R_A = \frac{\varepsilon}{I_2}$$

Выразим отсюда R и R_A :

$$R = \frac{\varepsilon}{I_2} - \frac{\varepsilon}{I_1} = \frac{\varepsilon \left(I_1 - I_2 \right)}{I_1 I_2}, \quad R_A = \frac{2\varepsilon}{I_1} - \frac{\varepsilon}{I_2} = \frac{\varepsilon \left(2I_2 - I_1 \right)}{I_1 I_2}.$$

При измерении силы тока, текущего через батарею, амперметр соединяется последовательно с парой сопротивлений R и



2R. Общее сопротивление цепи в этом случае равно:

$$R_0 = \frac{2R}{3} + R_A = \frac{2R + 3R_A}{3}.$$

Здесь 2R/3 — общее сопротивление пары R и 2R. Используя выражения для R и R_A , получаем:

$$R_0 = \frac{\varepsilon}{3 I_1 I_2} \left(2 I_1 - 2 I_2 + 6 I_2 - 3 I_1 \right) = \frac{\varepsilon \left(4 I_2 - I_1 \right)}{3 I_1 I_2}.$$

Ток I, текущий через батарею, равен

$$I = \frac{\varepsilon}{R_0} = \frac{3 \, I_1 I_2}{4 \, I_2 - I_1}.$$

Подставим числовые значения токов в миллиамперах:

$$I = \frac{3 \cdot 30 \cdot 20}{80 - 30} = \frac{180}{5} = 36 \text{ mA}.$$

Ответ:

$$I = rac{3I_1I_2}{4I_2 - I_1} = 36 \; \mathrm{mA} \, .$$

Задача 6/2. К батарее последовательно подключены два одинаковых сопротивления. Измеряя с помощью одного и того же вольтметра напряжение на одном из сопротивлений и на обоих сопротивлениях получили, значения $V_1 = 40~\mathrm{B}$ и $V_2 = 100~\mathrm{B}$. Найдите, какое напряжение V покажет вольтметр, если включить его последовательно с сопротивлениями. Ответ выразите в вольтах. Внутреннее сопротивление батареи не учитывайте.

Ответ:

$$V = \frac{V_1 V_2}{2V_2 - 3V_1} = 50 \text{ B}.$$