Олимпиада школьников «Курчатов» по физике — 2025

Заключительный этап

22 марта

8 класс

Задача 1. Лодка начала движение от одного берега реки к противоположному. Лодочник направил нос лодки перпендикулярно берегу и начал грести веслами, сообщая лодке скорость поперек реки, но за счёт течения лодку относило и вдоль реки со скоростью $u_1 = 10 \, \mathrm{km/v}$. Когда лодка достигла середины реки, начался сильный ветер, и её стало сносить вдоль реки уже со скоростью $u_2 = 15 \, \mathrm{km/v}$. Испугавшись, лодочник начал грести сильнее и в итоге всё же причалил к противоположному берегу. Оказалось, что средняя скорость движения лодки вдоль реки равна $\langle u \rangle = 12 \, \mathrm{km/v}$. Во сколько раз быстрее стал грести лодочник?

Задача 2. Вероника собралась готовить обед и достала из холодильника пельмени. Каждый пельмень имеет массу $m_{\pi}=20$ г, состоит на 70% по массе из воды и имеет начальную температуру $t_1=-20^{\circ}C$. Вероника поставила на плиту кастрюлю, в которой находится $m_{\text{в}}=1,2$ кг воды, которая вскоре начала кипеть при температуре $t_2=100^{\circ}C$.

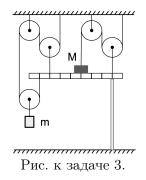
1. Вероника бросила в кипящую воду один пельмень, после чего вода перестала кипеть. Через

какое время au вода в кастрюле закипит снова?

2. Вероника долила воды в кастрюлю, измерила ее новую температуру $t_3 = 90^{\circ}C$ и спустя $\Delta \tau = 20$ с стала забрасывать пельмени по одному через каждые 30 с (в моменты времени 20, 50, 80, 110 с), причём температура воды после забрасывания каждого пельменя уменьшалась на $1^{\circ}C$. Постройте график зависимости температуры воды от времени в течение первых 2-ух минут, если суммарная масса пельменей значительно меньше массы воды.

Удельная теплоёмкость пельменя при температуре ниже $0^{\circ}C$ составляет $c_{\rm n1}=2000\frac{\Delta_{\rm Kr} \cdot \circ C}{{\rm Kr} \cdot \circ C}$, а при температуре выше $0^{\circ}C$ составляет $c_{\rm n2}=3500\frac{\Delta_{\rm Kr} \cdot \circ C}{{\rm Kr} \cdot \circ C}$, удельная теплоёмкость воды $c_{\rm B}=4200\frac{\Delta_{\rm Kr} \cdot \circ C}{{\rm Kr} \cdot \circ C}$, удельная теплота плавления льда $\lambda=3.34\cdot 10^5$ Дж/кг. Полезная мощность плиты P=1000 Вт. Считайте, что тепловой баланс между пельменями и водой устанавливается мгновенно.

Задача 3. На тонкой невесомой планке, соединённой невесомыми верёвками с системой невесомых блоков, расположен груз массой $M=35~\rm kr$. Планка поддерживается устойчивой вертикальной доской.


1. Определите, при каких значениях массы m груза, подвешенного к блоку, система останется в равновесии.

2. Определите, при каких значениях массы m груза, подвешенного к блоку, планка сможет остаться в равновесии после удаления поддерживающей доски.

Вертикальные черточки делят планку на равные части. Трение во всей системе отсутствует, масса планки и блоков пренебрежимо мала.

Задача 4. Вероника определяет сопротивление резистора R, используя источник напряжения U=12 В и два неидеальных амперметра A_1 и A_2 с неизвестными сопротивлениями R_1 и R_2 соответственно. Она проводит три эксперимента. В первом опыте последовательно соединены резистор R и амперметр A_1 , сила тока в цепи равна $I_1=2,4$ А. Во втором опыте последовательно с тем же резистором включается амперметр A_2 , и сила тока равна $I_2=2,0$ А. В третьем опыте резистор R последовательно соединён с параллельно соединёнными амперметрами A_1 и A_2 ; общая сила тока в цепи, то есть сумма показаний обоих амперметров, равна $I_3=3$ А. Найдите сопротивление резистора R.

Задача 5. Экспериментатор Глюк проводил опыт с теплоизолированным цилиндрическим сосудом, в котором он зафиксировал на дне кусок льда при температуре $t_0=0^{\circ}C$. Затем он налил в сосуд воду так, что лёд оказался полностью под водой. Масса налитой воды в точности равна массе льда. Когда в сосуде установилось тепловое равновесие, Глюк заметил, что уровень воды опустился на $\alpha=2,0\%$ относительно первоначального. Определите начальную температуру t_x налитой в сосуд воды. Плотность воды $\rho_0=1,0$ г/см³, плотность льда $\rho=0,9$ г/см³, удельная теплоёмкость воды $c_{\rm B}=4,2$ $\frac{\kappa \mathcal{I}_{\rm KF}}{\kappa \Gamma \cdot C}$, удельная теплота плавления льда $\lambda=330$ кДж/кг. Изменением объёма воды из-за теплового расширения, испарением воды пренебречь. Считайте, что теплоемкость сосуда пренебрежимо мала по сравнению с теплоемкостью воды и льда в сосуде. В ходе эксперимента лёд остаётся неподвижным на дне сосуда.

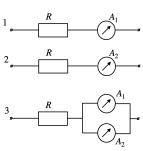


Рис. к задаче 4.