Олимпиада «Курчатов»

2016–17 учебный год

Заключительный этап

9 класс

Задача 1

Условие

Два авианосца движутся навстречу друг другу с постоянными скоростями. Скорость первого авианосца 20 км/ч, скорость второго — 30 км/ч. В момент, когда расстояние между кораблями равно 60 км, с первого авианосца взлетает вертолёт и движется по прямой ко второму авианосцу со скоростью 150 км/ч. Долетев до второго авианосца, вертолёт зависает на 18 минут над этим кораблём, и затем возвращается на первый авианосец, вновь двигаясь со скоростью 150 км/ч. Сколько времени вертолёт отсутствовал на первом авианосце? Найдите путь, пройденный вертолётом.

Возможное решение

В первой части полёта вертолёт и второй авианосец сближаются со скоростью 180 км/ч. Значит, вертолёт долетит до второго авианосца за время

$$t_1 = \frac{60 \text{ км}}{180 \text{ км/ч}} = 20 \text{ мин.}$$

Затем в течение времени $t_2=18$ минут вертолёт двигался вместе со вторым авианосцем. За $t_1+t_2=38$ минут авианосцы сблизятся на

$$50 \text{ км/ч} \cdot \frac{38}{60} \text{ ч} = \frac{95}{3} \text{ км,}$$

и расстояние между ними будет равно $\frac{85}{3}$ км. Скорость сближения вертолёта и первого авианосца 170 км/ч, обратный путь займёт время

$$t_3 = \frac{\frac{85}{3} \text{ км}}{170 \text{ км/ч}} = \frac{1}{6} \text{ ч} = 10 \text{ мин.}$$

Полное время полёта

$$t = t_1 + t_2 + t_3 = 48$$
 мин.

Вертолёт время $t_1+t_3=30$ мин двигался со скоростью 150 км/ч, а время $t_2=18$ мин двигался со скоростью 30 км/ч, поэтому путь, пройденный вертолётом, равен

$$s = 150 \frac{\text{KM}}{\text{Y}} \cdot \frac{1}{2} \text{ Y} + 30 \frac{\text{KM}}{\text{Y}} \cdot \frac{3}{10} \text{ Y} = 84 \text{ KM}.$$

Критерии оценивания

Правильное решение оценивается в 5 баллов независимо от выбранного участником метода.

Правильно использовано соотношение между временем, скоростью и рас	сстоянием при рав-
номерном движении	1 балл
Правильно найдены все необходимые скорости сближения	1 балл
Правильно найдено полное время полёта	2 балла
Правильно найден пройденный вертолётом путь	1 балл

Задача 2

Условие

Диск катится без проскальзывания с постоянной скоростью v_0 вниз по наклонной плоскости, составляющей угол 60° с горизонтом. Найдите модуль скорости верхней точки диска.

Возможное решение

Проскальзывание отсутствует, следовательно, все точки на краю диска вращаются относительно центра со скоростью v_0 . Полная скорость точки складывается из скорости вращательного движения и скорости поступательного движения центра. Скорость вращательного движения равна по модулю v_0 и направлена горизонтально (поскольку это самая верхняя точка диска), а скорость центра по модулю также равна v_0 и направлена под углом 60° к горизонту. Значит, вертикальная составляющая скорости центра равна $v_0 \sin 60^\circ = (\sqrt{3}/2)v_0$, а горизонтальная равна $v_0 \cos 60^\circ = v_0/2$. Вертикальная составляющая полной скорости равна $(\sqrt{3}/2)v_0$, а горизонтальная составляющая полной скорости равна $v_0 + v_0/2 = (3/2)v_0$. Модуль полной скорости найдём по теореме Пифагора:

$$v = \sqrt{\frac{3}{4}v_0^2 + \frac{9}{4}v_0^2} = \sqrt{3}v_0.$$

Критерии оценивания

Правильное решение оценивается в 5 баллов независимо от выбранного участником метода.

Использовано разложение на вращательное и поступательное движение	1 балл
Показано, что скорость вращательного движения равна v_0	1 балл
Найдено направление скорости вращательного движения	1 балл
Использована теорема Пифагора для нахождения модуля скорости	1 балл
Получен ответ	1 балл

Задача 3

Условие

Невесомая нерастяжимая нить перекинута через идеальный неподвижный блок. К концам нити подвешены небольшие грузы: к правому — груз массой m_1 , к левому — груз массой m_2 , $m_1 > m_2$. Изначально грузы удерживают неподвижно на одном уровне, затем их отпускают. Найдите скорости (модуль и направление) грузов в момент, когда расстояние между ними по вертикали составит h. Ускорение свободного падения g, трение пренебрежимо мало.

Возможное решение

Поскольку нить нерастяжимая, скорости грузов в любой момент будут равны по модулю и противоположны по направлению. Правый груз тяжелее, следовательно, его скорость будет направлена вертикально вниз, а скорость левого будет направлена вертикально вверх. Чтобы найти модуль скорости, воспользуемся законом сохранения энергии:

$$\frac{(m_1 + m_2)v^2}{2} = (m_1 - m_2)g\frac{h}{2}.$$

Здесь учтено, что правый груз опустился на h/2, а левый поднялся на h/2. Получаем ответ для модуля скорости

$$v = \sqrt{\frac{m_1 - m_2}{m_1 + m_2}gh}.$$

Критерии оценивания

Правильное решение оценивается в 5 баллов независимо от выбранного участником метода.

Залача 4

Условие

На электрической плите стоит цилиндрическая кастрюля с кипящей водой. За t=10 мин уровень воды в кастрюле уменьшился на h=2 мм. Найдите КПД электроплиты, если она работает от источника постоянного тока напряжением U=220 В, сопротивление нагревательной спирали R=50 Ом, площадь поперечного сечения кастрюли S=350 см 2 . Полезной работой плиты считайте теплоту, переданную воде в кастрюле. Удельная теплота парообразования воды $L=2,3\,$ МДж/кг, плотность воды $\rho=1,0\,$ г/см 3 .

Возможное решение

Потребляемая плитой мощность равна $P_0 = U^2/R = 968$ Вт. Полезная мощность идёт на испарение воды:

$$P_1 = \frac{L\Delta m}{\Delta t} = \frac{L\rho Sh}{t} \approx 268 \text{ Bt.}$$

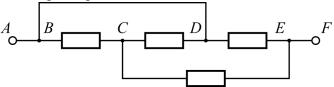
КПД электроплиты

$$\eta = \frac{P_1}{P_0} \approx 28\%.$$

Критерии оценивания

Правильное решение оценивается в 5 баллов независимо от выбранного участником метода.

 Найдена потребляемая мощность по закону Джоуля-Ленца
 1 балл

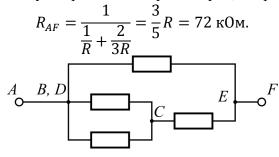

 Получено выражение для полезной мощности
 2 балла

 Правильно рассчитан КПД
 2 балла

Задача 5

Условие

Найдите сопротивление между точками A и F участка цепи, схема которого показана на рисунке. Все резисторы имеют одинаковое сопротивление R=120 кОм, сопротивлением соединительных проводов можно пренебречь.


Возможное решение

Точки B и D соединены проводом с пренебрежимо малым внутренним сопротивлением, поэтому эти точки можно объединить в одну. Получим эквивалентную схему, показанную на рисунке.

Между точками B и C два резистора соединены параллельно, их можно заменить одним с сопротивлением R/2. На участке BCE теперь имеется два резистора, соединённых последовательно, их можно заменить на один с сопротивлением

$$\frac{R}{2} + R = \frac{3}{2}R.$$

В итоге получилась схема из двух параллельных резисторов, сопротивление которой

Критерии оценивания

Правильное решение оценивается в 5 баллов независимо от выбранного участником метода.

Указано, что точки B и D можно соединить в одну	1 балл
Изображена правильная эквивалентная схема	1 балл
Применены формулы для последовательного и параллельного соединения	1 балл
Получен верный ответ	2 балла